67,788 research outputs found

    Formation of the Leonid meteor stream and storm

    Get PDF
    It is well known that some meteor showers display a very high level of activity at certain times, the most famous being the Leonid shower with very spectacular displays at roughly 33 year intervals. This period being also the period of the parent comet of the stream, Comet Tempel-Tuttle. An investigation of the geometry of the comet and the Earth at the time of each high activity occurrence by Yeomans suggests that most of the meteoroids are found outside the cometary orbit and lagging the comet. The formation process of such a stream by numerically integrating the orbits of dust particles ejected from the comet and moving under the influence of gravity and radiation pressure are simulated. The intersection of these dust particles with the Earth is also considered and it is concluded that about 12 percent of the ejected particles may be observed and that of those observable, 63 percent will be outside the cometary orbit and behind the comet

    Did Earth-approaching asteroids 3551, 3908, or 4055 produce meteorites?

    Get PDF
    Orbital integrations show that Amor asteroid 3908 could have ejected one out of four plausible groups of meteorite producing fireballs during a collision in the asteroid belt. It was suggested by others that such a collision may also have split asteroids 3551 and 3908. A member of this group of fireballs is listed as one of the better possibilities for recovery

    The velocity of meteoroids

    No full text
    International audienceDetermining the velocity of meteoroids as they enter the Earth's atmosphere is very important since the value is fundamental in calculating the orbit of the meteoroid and hence eventually its origin. We describe early attempts at this determination and high-light problems that exist today

    Nodal Domain Statistics for Quantum Maps, Percolation and SLE

    Full text link
    We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated by numerical computations for perturbed cat maps and supports the use of percolation theory to describe the wave functions of general hamiltonian systems, where the validity of the underlying assumptions is much less clear. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing formula and find evidence that the boundaries of the nodal domains are described by SLE with κ\kappa close to the expected value of 6, suggesting that quantum chaotic wave functions may exhibit conformal invariance in the semiclassical limit.Comment: 4 pages, 5 figure

    The velocity of meteoroids: a historical review

    Get PDF
    International audienceDetermining the velocity of meteoroids as they enter the Earth's atmosphere is very important since the value is fundamental in calculating the orbit of the meteoroid and hence eventually its origin. We describe early attempts at this determination and highlight problems that exist today

    Effect of signal duration on detection for gated and for continuous noise

    Get PDF
    Effect of signal duration on detection for gated and continuous nois

    On the dynamical structure of the Trojan group of asteroids

    Get PDF
    Using a semi-analytical approach, domains of possible motion for Trojan asteroids were established. It is shown that stable librating motion is possible for both high inclination and high eccentricity. Frequency distributions were also produced for real Trojan asteroids, against differing libration amplitudes and libration periods

    Evolutional Entanglement in Nonequilibrium Processes

    Full text link
    Entanglement in nonequilibrium systems is considered. A general definition for entanglement measure is introduced, which can be applied for characterizing the level of entanglement produced by arbitrary operators. Applying this definition to reduced density matrices makes it possible to measure the entanglement in nonequilibrium as well as in equilibrium statistical systems. An example of a multimode Bose-Einstein condensate is discussed.Comment: 10 pages, Late

    Spectroscopy of D-type asteroids

    Get PDF
    We have performed a spectroscopic survey of 19 D-type asteroids. Comparison with previous photometry shows excellent agreement. Although the majority have similar colors to cometary nuclei, no cometary emission bands were present in any of the spectra. Absorption bands sporadically appearing were apparently due to stellar objects, and no features inherent to the asteroids were observed

    Creation of a molecular condensate by dynamically melting a Mott-insulator

    Full text link
    We propose creation of a molecular Bose-Einstein condensate (BEC) by loading an atomic BEC into an optical lattice and driving it into a Mott insulator (MI) with exactly two atoms per site. Molecules in a MI state are then created under well defined conditions by photoassociation with essentially unit efficiency. Finally, the MI is melted and a superfluid state of the molecules is created. We study the dynamics of this process and photoassociation of tightly trapped atoms.Comment: minor revisions, 5 pages, 3 figures, REVTEX4, accepted by PRL for publicatio
    corecore